รหัสสินค้า | BR00327 |
หมวดหมู่ | Shield/Sensor Shield/HAT |
ราคา | 4,685.00 บาท |
สถานะสินค้า | พร้อมส่ง |
จำนวน | ชิ้น |
ดูรายละเอียดการใช้งานได้ที่ Click
สินค้าประกอบด้วย
Weight: 0.042 kg
Raspberry Pi AI Kit ×1
Designed For Raspberry Pi 5
The Raspberry Pi AI Kit Bundles The Raspberry Pi M.2 HAT+ With A Hailo AI Acceleration Module For Use With Raspberry Pi 5, Provides An Accessible, Cost-Effective, And Power-Efficient Way To Integrate High-Performance AI, Suitable For Applications Including Process Control, Security, Home Automation, And Robotics.
The AI module is a 13 TOPS neural network inference accelerator built around the Hailo-8L chip. The module uses the M.2 2242 form factor, and communicates with the Raspberry Pi 5 by accessing to the Raspberry PI M.2 HAT+.
When the host Raspberry Pi 5 is running an up-to-date Raspberry Pi OS image, it automatically detects the Hailo module and makes the NPU available for AI computing tasks. The built-in rpicam-apps camera applications in Raspberry Pi OS natively support the AI module, automatically using the NPU to run compatible post-processing tasks.
PERFORMANCE (INT8) | 13 TOPS |
---|---|
FRAMEWORKS SUPPORT | TensorFLow, TensorFlow Lite, ONNX, Keras, Pytorch |
HOST ARCHITECTURE SUPPORT | X86 or ARM |
CERTIFICATIONS | CE, FCC Class A |
OPERATING TEMPERATURE | 0°C ~ 50°C |
STORAGE/OPERATING HUMIDITY | 5% ~ 90% RH (no condensation) |
INTERFACE TYPE | M.2 Key B+M |
DIMENSIONS | 22 × 42mm |
POWER SUPPLY | 3.3V ± 5% |
THERMAL DESIGN POWER (TDP) | 6.6W |
INTERFACE | PCIe Gen3, 2-lanes (x2) |
Equipped With A 16Pin Official Cable For Connecting The Raspberry Pi M.2 HAT+ To The Pi5. Onboard NVMe Protocol High-Speed Reading/Writing M.2 Interface, Compatible With M.2 Solid State Drives In 2230/2242 Sizes
Can Be Used Together With The Pi5 Active Cooler B To Achieve Better Heat Dissipation Effect, Keeping It Cool Even Under Heavy Processing
Image recognition
Object recognition
Pose estimation
Position tracking
The Raspberry Pi AI Kit Bundles The Raspberry Pi M.2 HAT+ With A Hailo AI Acceleration Module For Use With Raspberry Pi 5.
Pay attention to the cable orientation, as shown below:
#1: update software sudo apt update && sudo apt full-upgrade sudo rpi-eeprom-update #Configure CLI (Not required for systems above 2024) sudo raspi-config 在Advanced Options -> Bootloader Version, select Latest. Then use Finish or Esc to exit raspi-config #2: update firmware sudo rpi-eeprom-update -a
1: Enable PCIE interface:
Connect the hardware and the PCIE interface will automatically open as the latest system detects the hardware. If it does not open, you can execute: add "dtparam=pciex1" in the /boot/firmware/config.txt
2: Enable PCIE Gen3: add the following content at /boot/firmware/config.txt: (Gne3 mode must be enabled):
dtparam=pciex1_gen=3
3: Reboot PI5 after modification, and then the device can be identified (or you can install the libraries before rebooting):
Running camera demos with rpicam-apps using the Hailo AI neural network accelerator.
Preparation:
1: Raspberry Pi 5 and Raspberry Pi AI Kit. 2: Install 64-bit Raspberry Pi OS Bookworm. 3: Install Raspberry Pi camera (for testing, using Raspberry_Pi_Camera _Module_3 to connect to the CAM1 interface).
1: Install the required dependencies for AI Kit:
sudo apt install hailo-all
2: Reboot the device:
sudo reboot
3: Check whether the driver is normal:
hailortcli fw-control identifyOr you can execute "dmesg | grep -i hailo" to check the log:
![]()
4: Check the camera:
rpicam-hello -t 10s Please make sure the camera is working properly
5: Clone rpicam-apps
git clone --depth 1 https://github.com/raspberrypi/rpicam-apps.git ~/rpicam-apps
6: Test:
Object test: rpicam-hello -t 0 --post-process-file ~/rpicam-apps/assets/hailo_yolov6_inference.json --lores-width 640 --lores-height 640 Yolov8 model: rpicam-hello -t 0 --post-process-file ~/rpicam-apps/assets/hailo_yolov8_inference.json --lores-width 640 --lores-height 640 YoloX model: rpicam-hello -t 0 --post-process-file ~/rpicam-apps/assets/hailo_yolox_inference.json --lores-width 640 --lores-height 640 Yolov5 characters and facial models rpicam-hello -t 0 --post-process-file ~/rpicam-apps/assets/hailo_yolov5_personface.json --lores-width 640 --lores-height 640 Image segmentation: rpicam-hello -t 0 --post-process-file ~/rpicam-apps/assets/hailo_yolov5_segmentation.json --lores-width 640 --lores-height 640 --framerate 20
Posture estimation: rpicam-hello -t 0 --post-process-file ~/rpicam-apps/assets/hailo_yolov8_pose.json --lores-width 640 --lores-height 640
For more content, you can refer to GitHub and Hailo website.
ชำระเงินค่าสินค้าโดยการโอนเงินเข้าบัญชีธนาคาร KBANK, SCB, BBL,TMB
กรุณาเก็บหลักฐานการโอนเงินของท่านไว้เพื่อแจ้งการชำระเงินด้วยค่ะ
ท่านสามารถแจ้งการชำระเงินผ่านระบบอัตโนมัติได้โดย Click Link ข้างล่างค่ะ
https://www.arduitronics.com/informpayment
หน้าที่เข้าชม | 15,391,895 ครั้ง |
ผู้ชมทั้งหมด | 5,894,974 ครั้ง |
เปิดร้าน | 21 พ.ค. 2556 |
ร้านค้าอัพเดท | 15 ก.ย. 2568 |